» » » » Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее


Авторские права

Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Здесь можно скачать бесплатно "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Юнацтва, год 1991. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее
Рейтинг:
Название:
Открытие Вселенной - прошлое, настоящее, будущее
Издательство:
Юнацтва
Год:
1991
ISBN:
5-7880-0325-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Открытие Вселенной - прошлое, настоящее, будущее"

Описание и краткое содержание "Открытие Вселенной - прошлое, настоящее, будущее" читать бесплатно онлайн.



На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.






И сразу же возникает один очень интересный аспект микрозвезд гравитационные атомы.

Уже давно теоретики обратили внимание на одну серьезную несправедливость — кулоновские электрические силы легко связывают, скажем, электрон и протон в атом,[128] тогда как гравитационным силам это как бы не удается. Дело, конечно, в их исключительной слабости. Элементарным частицам невозможно образовать сколь-нибудь устойчивую атомную систему за счет потенциала тяготения. Наглядно это выражается в том, что, скажем, размер гравитационного атома из пары π — мезонов достигает радиуса наблюдаемой Вселенной ((ћ2/Gmπ3 ~ c/H ~ RВсел, где Н — современное значение функции Хаббла). Поэтому, вероятней всего, строить такие атомы без учета качественно новых типов звезд и элементарных частиц не имеет смысла.

Оказывается, что микрозвезды массой 1015 г как раз и могут связываться с электроном в водородоподобную систему, причем удается вычислить тонкие различия в спектре такого атома и обычного водорода, где роль ядра играет протон. Не исключено, что лишь по этим спектральным различиям и следует искать новые атомы. Благодаря недавнему обнаружению очень малой массы покоя у электронного нейтрино можно построить модель, в которой гравитационный атом с орбитальным нейтрино достигает практически макроскопических размеров (rB ~ 10-4 см).

Все эти идеи довольно любопытны, однако главная проблема относится к строению микрозвезд. Один из очевидных подходов — аналогия с нейтронными звездами, иными словами, предположение о том, что микрозвезда состоит из холодного газа частиц, подобных нейтронам. Проблема, однако, в том, что эти частицы, супербарионы, чрезвычайно массивны — примерно в миллиард раз массивней нейтрона, и их поиск на ускорителях пока дело неблизкого будущего[129].

Но уж если фантазировать, так до конца!

Опять-таки проблема микрозвезд толкает нас к планковской области. Попробуем подумать, какой может быть предельно малая звезда?

Очень интересная оценка возникает при попытке сконструировать звезду из холодного газа частиц, каждая из которых эквивалентна самой звезде. Оказывается, такой самозашнурованный объект будет состоять из планкеонов и сам будет планкеоном.

Не сшиваются ли таким образом две вроде бы совершенно несопоставимых группы космического населения — элементарные частицы и звезды? Не является ли планкеон одновременно чем-то вроде минимальной звезды и максимальной частицы?

Должно быть, мы достаточно углубились в сферу мысленных конструкций, не имеющих под собой пока ни одного экспериментального факта. Однако в данной ситуации путешествие по многообразным и скользким путям воображения кое-чем оправдано. На горизонте маячит принципиально новая ветвь астрофизики, тесно переплетенная с грядущими исследованиями поведения вещества в совершенно необычных условиях. Мы ощупываем этот горизонт лучами своих весьма несовершенных аналогий, но даже в столь примитивном освещении вырисовывается нечто крайне привлекательное.

Открытие реликтовых структур типа микрозвезд или каких-то явных следов их существования в ранней Вселенной стало бы одним из мощнейших революционизирующих толчков в истории естествознания. Мало того, что само по себе оно дало бы новую сферу исследований, оно послужило бы и важнейшей опорной точкой для броска в планковскую область, в зону Первовзрыва.

Возможность сшить два мира — звезд и элементарных частиц — кажется чем-то сказочным, однако тот, кто посчитает эту идею пределом фантастики, разочаруется очень скоро — уже в следующем разделе мы столкнемся с не менее эффектными гипотезами.

Антропогенный принцип

Хорошая физическая теория должна, исходя из очень небольшого круга фундаментальных положений, выводить конкретные предсказания, в частности, объяснять численные значения наблюдаемых характеристик окружающего мира. Речь идет о массах, временах жизни, светимостях, частотах и т. д.

С большинством таких задач современная физика справляется довольно успешно. Например, мы знаем, что характерная частота переходов в атоме водорода, полностью нормирующая его спектр, легко выражается через постоянную Планка, заряд и массу электрона — это так называемая постоянная Ридберга (R∞ = mee4/2 ћ2). Характерная масса звезды типа Солнца с точностью до несущественного числового множителя оценивается комбинацией трех мировых констант и массы протона (M~ (ћc/G)3/2 mp-2 ~ (mP3/mp2)), то есть удобно выражается через планковскую массу. Нечто похожее имеет место и в других случаях — все в порядке, если наблюдаемые параметры объектов и процессов выражены через некий минимальный набор констант.

В этот набор сейчас включены и величины, которым, может быть, там не место. Многие физики убеждены, что более общая теория даст методы расчета спектра масс элементарных частиц, и массы электрона и протона будут выражены через какие-то более фундаментальные вещи, например, через планковскую массу. Не исключено, что найдутся в такой общей теории и идеи, позволяющие вычислять заряд электрона и другие константы взаимодействия. Было бы, конечно, здорово свести все и вся к комбинациями трех мировых констант ћ, с, G или, что то же самое, к планковским единицам. Но пока приходится опираться на достигнутое, и реалистический минимальный набор, наряду с фундаментальной тройкой, включает массы и константы взаимодействия элементарных частиц.

Общая теория имеет шанс еще долго пробыть предметом веры, но в связи с ее предполагаемым появлением есть и несколько пессимистические точки зрения. Честно говоря, в области известных ныне элементарных частиц не видно параметра с размерностью массы, который позволил бы объяснить весь спектр наблюдаемых масс. И не так-то легко поверить в существование одного параметра, который (подобно константе Ридберга в атомной физике) даст единую нормировку массового спектра в огромном интервале от нейтрино до самых тяжелых адронных резонансов. Что же касается стратегии дальнего прицела, например, использования планковской массы, то по нынешнему физико-математическому кругозору кажется маловероятным, чтобы какая-то теория уверенно вычисляла потрясающе малые безразмерные константы отношения масс обычных элементарных частиц к массе планкеона (скажем, для протона mр/mР = 10–19!).

Если даже предположить, что программа такого рода будет выполнена, и все известные массы частиц и константы связи выстроятся из фундаментальной тройки, то останется и такой вопрос: как объяснить тройку, или, по-другому, откуда берется планковский набор {lP, tP, mP}?

Подходя к делу прагматично, можно вообще не считать актуальной проблемой получение спектра масс элементарных частиц и тем более установление природы планковского набора. В конце концов, современный уровень физики просто не позволяет заглянуть достаточно глубоко — в свое время и набор частот в атомных спектрах представлялся загадкой…

Есть и иной путь — поискать какую-то совсем оригинальную схему объяснения, не исключая даже сильных отклонений от существующей физической традиции. Под традицией понимается своеобразная атомистическая идеология, сложившаяся в первые десятилетия нашего века под впечатлением грандиозных успехов атомной и молекулярной физики. Есть определенный структурный уровень материи — окружающее нас вещество. Его свойства во всех фазах (газовой, жидкой и твердой) хорошо объясняются моделью атомно-молекулярного строения. Но сами параметры атомов и молекул — массы, размеры, характерные частоты — до поры входили в теорию просто как необъяснимые константы. Квантовая теория превосходно объяснила эти параметры на более глубоком структурном уровне, создав модели строения атомов и молекул. На сегодняшний день атомно-молекулярная картина целиком выводима из свойств элементарных частиц, то есть основана на еще более глубоком структурном уровне материи. Ну, и так далее — прорвемся мы когда-нибудь к следующему уровню и на этой основе построим полную теорию элементарных частиц, и их массы, конечно же, исчезнут из минимального набора констант…

Вполне вероятно, что так и будет, но есть ли уверенность, что материя достроена по строго матрешечному принципу?

Оригинальная точка зрения, не разделяющая эту уверенность, стала развиваться в 60-е годы. Речь идет о так называемом методе бутстрэпа, или самозашнуровки[130]. Этот подход выставил в качестве схемы объяснения такую идею: все параметры минимального набора образуют единственную самосогласованную систему в том смысле, что любой из них имеет наблюдаемое значение, поскольку все остальные имеют тоже наблюдаемые значения. Иными словами, масса протона составляет 1,67.10–24 г потому, что масса электрона 9,11.10–28 г, масса Солнца 1,99.1033 г, а скорость света 3.1010 см/с и т. д. И если немного изменить массу протона (или Солнца или? — мезона), «поедут» все остальные фундаментальные константы и параметры, теоретические оценки во всех областях разойдутся с наблюдениями.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Открытие Вселенной - прошлое, настоящее, будущее"

Книги похожие на "Открытие Вселенной - прошлое, настоящее, будущее" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Потупа

Александр Потупа - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее"

Отзывы читателей о книге "Открытие Вселенной - прошлое, настоящее, будущее", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.