Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Открытие Вселенной - прошлое, настоящее, будущее"
Описание и краткое содержание "Открытие Вселенной - прошлое, настоящее, будущее" читать бесплатно онлайн.
На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.
Численное моделирование принесло удивительный результат. Оказывается, при весьма правдоподобных условиях вращающееся и сжимающееся протозвездное облако стремится стать не дискообразным, а тороидальным — на определенной стадии оно выглядит, как «бублик», лишенный центральной конденсации. Но такой газовый бублик очень неустойчив и, вероятней всего, быстро фрагментирует на 2 крупных сгустка и несколько мелких. Последующее взаимодействие главных сгустков определяет судьбу облака — оно превращается либо в двойную звездную систему, либо в систему звезды с большой планетой. Последний вариант реализуется в том случае, если один из сгустков входит в режим «вампира», отсасывая атмосферу соседа, а, следовательно, и большую часть его массы. Сгусток-вампир становится протозвездой и как значительно более массивное тело стремится расположиться практически в центре инерции облака. Зато второй сгусток-протопланета отбирает основную часть суммарного момента количества движения, оставляя на долю партнера лишь несколько процентов этого момента. Это очень похоже на наблюдаемую ситуацию с Солнцем и Юпитером. В таком подходе именно двойные звездные системы и звезды с большими планетарными спутниками представляются наиболее распространенным населением Галактики. Пожалуй, самый важный результат исследований по космогоническому моделированию — высокая вероятность формирования планет в процессе рождения звезды.
Завершая этот раздел, необходимо подчеркнуть следующее. Нарисованная здесь картина является в определенной мере усреднением многих моделей. В последние десятилетия космогония развивается необычайно интенсивно. Теория стремится с максимальной точностью объяснить все известные факты, но количество фактов и их взаимосвязей все время растет. Поэтому многие элементы приведенной картины непрерывно переосмысливаются. Факторы, на которые когда-то не обращали должного внимания, нередко выдвигаются на первый план. Скажем, в галактической космогонии существует очень серьезная проблема первичных вихрей. Простое постулирование вращения протогалактических облаков не кажется уже вполне удовлетворительным хотелось бы вывести это важнейшее наблюдаемое явление из каких-то общих космологических принципов. Многое еще не ясно в теории эволюции галактических ядер, да и привычных звезд, особенно в начальной фазе. В этих областях буквально на глазах формируется, пожалуй, самая молодая ветвь астрофизики. Продвигаясь в анализе протозвездной фазы, мы сумеем лучше понять и ранние стадии планетной космогонии. Вообще нельзя не отметить, что даже Солнечная система (не говоря уж о планетных мирах далеких звезд) изучена довольно слабо. После всех открытий прошлых веков, рассмотренных в предыдущей части, это может показаться ученым скромничанием, однако же, это факт.
Попробуем оценить его простейшим образом. Плутон находится в среднем в 40 астрономических единицах от Солнца. О том, что находится за этой экзотической планетой, мы почти ничего не знаем[138].
Между тем, общий размер Солнечной системы не менее 200 тыс. астрономических единиц (порядка 1 парсека). Вплоть до таких расстояний Солнце должно оказывать основное гравитационное влияние на все объекты (на больших расстояниях в игру вмешиваются ближайшие звезды). Так вот, с этой точки зрения неплохо изученный объем составляет (40/200000)3 ~ 8.10–12 примерно одну стомиллиардную часть! За орбитой Плутона могут находиться десятки планет и целые астероидные пояса, более того что-то такое там непременно должно быть, поскольку высокоточная современная теория движения внешних планет (Урана, Нептуна, Плутона) и кометы Галлея все еще находится в неудовлетворительном согласии с наблюдениями. Одна или несколько неоткрытых трансплутоновых планет систематически действуют на параметры известных орбит[139]. Для поиска этих объектов нужно проводить систематические исследования заплутонова пространства на предельно мощных телескопах и в перспективе — с помощью космических зондов. В сфере этих поисков, возможно, кроются ответы на принципиальные проблемы космогонии, в частности, оценка размеров протозвездного облака[140].
Итак, нарисованная картина может заметно измениться во многих деталях, но существуют и совсем иные точки зрения. Например, в течение многих десятилетий советский астрофизик В. А. Амбарцумян и его школа развивают представления, противоположные «пылевой космогонии». Их позиция основана на гипотезе образования космических структур из неких сверхплотных зародышей (сгустков так называемого дозвездного вещества). Структуры должны возникать в результате взрывообразной эволюции зародышей. Наблюдательной основой гипотезы служит высокая активность многих галактических ядер и относительно высокий темп звездообразования. Этот не слишком модный в наши дни подход сыграл важную роль, постоянно привлекая внимание к мощным нестационарным процессам во Вселенной. Однако в идее зародышей заложено несколько больше, чем может показаться. В широком плане речь идет о том, как и когда был дан стартовый выстрел для формирования структур в масштабах, промежуточных между Вселенной в целом и отдельными элементарными частицами. Начался ли этот процесс только после синтеза всех известных частиц, когда они представляли собой уже достаточно охлажденный газ, или он протекал параллельно и оставил после себя совершенно экзотические объекты, прячущиеся в труднодоступных для наблюдения местах типа галактических центров? Вспомним о тех же микрозвездах и реликтовых дырах…
Не исключено, что истина лежит где-то посредине и в очень ранних космогонических фазах активность реликтовых образований действительно крайне важна, а несколько позже основную роль начинают играть более или менее понятные процессы гравитационной конденсации холодного газопылевого вещества.
В любом случае, тем, кто посвятил или собирается посвятить себя космогоническим моделям, еще долго не грозит смерть от скуки.
Эволюция Земли и других планет
Рассмотрим теперь в самых общих чертах, как протекало формирование Земли. Наша планета дает уникальный пример успешного прохождения химической и биологической эволюции, и, конечно, очень интересно выяснить, насколько ход этой эволюции естественен. Иными словами, не возникают ли в ходе анализа какие-то крайне маловероятные факторы, делающие результаты земной эволюции предельно редким космическим событием?
По современным астрофизическим и геофизическим данным, Земля образовалась примерно 4,6 млрд. лет назад. Вещество, из которого состояло протоземное облако, наверняка сильно отличалось по составу от водородно-гелиевой смеси. Видимо, около 10 млрд. лет назад в области Солнечной системы началось интенсивное обогащение тяжелыми элементами. Неплохое представление о химическом спектре в районе земной орбиты дают метеориты, а среди них преобладают каменные и железные с примесями кислородо-связывающих веществ. Именно анализ метеоритов позволяет нам восстановить элементный состав протопланетного облака, каким оно было 4,5 5 млрд. лет назад.
Конденсация протопланетного вещества под действием сил тяготения ведет к образованию твердого и компактного тела, внутри которого развивается давление, препятствующее дальнейшему сжатию. Однако не слишком большая исходная масса позволяет достичь весьма умеренных температур в недрах планеты. В большей части своего объема она сохраняет кристаллическую структуру.
Основным процессом геологической эволюции является гравитационная дифференциация — процесс, в котором более тяжелые вещества опускаются к центру планеты, а более легкие поднимаются к поверхности. Из-за этого Земля оказалась, в конечном счете, весьма неоднородной по плотности (12,68 г/см3 в центре при средней плотности 5,52 г/см3).
Дифференциация ведет к потере потенциальной энергии опускающихся слоев и некоторому уменьшению радиуса планеты. Потенциальная энергия выделяется в тепловой форме во внутренних слоях. Полное энерговыделение этого источника оценивается примерно в 1,6.1031 Дж, что с учетом возраста Земли приводит к очень приличной средней мощности (порядка 1014 Ватт!). Из-за уменьшения радиуса должна несколько увеличиваться скорость вращения — чтобы момент количества движения сохранялся.
Другой важный источник земной энергии — распад радиоактивных элементов. Оценки показывают, что такой распад выделил порядка 56 % от энергии дифференциации. Очень важно, что в ранние моменты формирования Земли радиоактивные изотопы генерировали значительно большее (в 4–7 раз) количество энергии, чем теперь, и, конечно, то, что в процессе гравитационной дифференциации изотопы вместе с силикатами концентрировались в коре и верхней мантии.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Открытие Вселенной - прошлое, настоящее, будущее"
Книги похожие на "Открытие Вселенной - прошлое, настоящее, будущее" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее"
Отзывы читателей о книге "Открытие Вселенной - прошлое, настоящее, будущее", комментарии и мнения людей о произведении.