Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Открытие Вселенной - прошлое, настоящее, будущее"
Описание и краткое содержание "Открытие Вселенной - прошлое, настоящее, будущее" читать бесплатно онлайн.
На основе обширных данных из астрономии, астрологии, географии, физики, математики, химии, биологии, истории, археологии и других наук автор рассказывает о строении Вселенной, истории человечества, о планетах Солнечной системы и Галактике, о звездах и их эволюции, о возможностях существования внеземных цивилизаций, о перспективах космических исследований, об идее контакта с инопланетянами.
В-третьих, планета должна иметь возраст хотя бы не менее 3 млрд. лет.
Рассчитывая все факторы на основе данных о звездах и строении Солнечной системы, Доул получает, что порядка 3,7 % подходящих звезд (классы F2-K1) должны иметь и подходящие планеты. Звезды К2 и более поздних классов автоматически выпали из его картины (PHP для них обратились в нуль). Что же касается классов F4 — F2, они дают не слишком большой вклад. Их исключение (если считать, что планетных систем у них вообще нет) приводит к концентрации подходящих планетных систем 3,83.10-2 пс-3, то есть к 613 млн. миров земного типа в Галактике, вместо 645 млн., полученных Доулом.
При столь грубых оценках разницы, в общем, нет. И 600 миллионов похожих на Землю планет воодушевляющее число. Среднее расстояние между такими планетами должно быть порядка 7,6 пс ~ 25 световых лет. Приятно думать, что уже в сфере радиусом 100 световых лет вокруг Солнца заключено с полсотни обитаемых или хотя бы пригодных для колонизации миров. В целом мы видим, что простая гипотеза о пригодности примерно 1 % из 150 млрд. звезд Галактики и наличия у каждой из таких звезд хотя бы одной подходящей планеты дает фактически близкую оценку в 1,5 млрд. таких планет в Галактике. При более скромном подходе (одна подходящая планета на 103 звезд) получается 150 млн. Видимо, интервал 100 млн.-1 млрд., куда попадает и оценка Доула, вполне приемлем на современном уровне знаний.
На самом деле, было бы интересно проиграть космогоническую ситуацию для звезд классов F5 — К1 на ЭВМ и на достаточно обширном статистическом материале оценить вероятность эволюционного появления подходящей планеты в каждом классе и в среднем по всем указанным классам. Если бы средняя частота появления подходящей планеты во всех классах оказалась бы действительно на уровне 0,1[153], то оценка не менее 100 млн. квазиземных планет стала бы куда более реалистической.
Обилие космической органики и благоприятные (по определению) условия подходящих планет делают вполне правдоподобной гипотезу, что вероятность появления жизни на каждой такой планете Рl = 1. Однако речь идет о самых ее примитивных формах — фактически считается предельно вероятным переход от фазы органических мономеров, скажем, к простейшей безъядерной клетке. Основой этой гипотезы служит попросту отсутствие очевидных факторов, которые в условиях подходящей планеты воспрепятствовали бы полимеризации, образованию мембран или формированию кода.
С гораздо большей натяжкой приходится говорить о переходе к эукариотам и тем более многоклеточным организмам. К сожалению, мы пока не знаем достаточно надежных методов моделирования соответствующих процессов, и какая-то разумно спроектированная игра на ЭВМ, позволяющая оценить средний процент биомассы, переходящей в высшие формы, оказала бы серьезную помощь в обсуждении проблемы. Во всяком случае, кажется вполне правдоподобным, что встретить на подходящей планете примитивнейшие формы жизни типа прокариотов намного вероятней, чем сложные организмы. Поэтому мы можем скрыть свое незнание соответствующего перехода за фактором порядка 0,1, считая таким образом, что примерно на 10 млн. планет жизнь представлена более или менее сложными животными или растительными формами.
Но все эти неопределенности меркнут перед тем, что возникает при попытке оценить такие факторы, как вероятность появления разума Рi, и технологической цивилизации Рс.
Подходящие планеты — разум и цивилизация
На знаменитом советско-американском симпозиуме по проблеме CETI[154], проходившем в сентябре 1971 года в Бюраканской астрофизической обсерватории АН Армянской ССР, около половины времени было уделено обсуждению формулы для оценки числа контактных цивилизаций в Галактике. Эта формула, предложенная Ф. Дрейком из Корнеллского университета, выглядит так:
N = R*fpnefefifcL,
где R*- средняя скорость образования звезд в Галактике за все время ее существования, — fp доля звезд с планетными системами, ne — среднее число экологически подходящих планет в такой системе, fe, fi и fc соответственно доли планет, где развилась жизнь, разум и контактные цивилизации (то есть достигшие высокого технологического уровня, допускающего связь с собратьями по разуму), L — средняя продолжительность жизни такой цивилизации.
Результирующая оценка, следствие многих бурных дискуссий, оказалась весьма оптимистической. Для факторов fp и ne были приняты единичные уровни, а для произведения fefifc?10-2. Наиболее надежный фактор R* нетрудно оценить по астрофизическим данным, принимая, что за 15 млрд. лет в Галактике образовалось 150 млрд. звезд, то есть R* ~ 10 звезд/год.
Таким образом, все свелось к очень трудной оценке L. Принимая, что хотя бы 1 % цивилизаций способен справиться с трудностями своего развития (то есть просуществовать порядка космогонического интервала в 109 лет), была получена крайне эффектная оценка L ~ 107 лет и N ~ 10-1 L ~ 106. Миллион развитых технологических цивилизаций в Галактике — это слишком хорошо, чтобы быть похожим на правду!
Результаты анкеты, распространенной Оргкомитетом Бюраканского симпозиума среди более широкого круга ученых, дали нечто совсем иное после усреднения всех ответов получилось что-то порядка 10 таких цивилизаций. Ряд факторов в формуле Дрейка (и особенно L) получили гораздо более скромную оценку. Индивидуальный опрос ученых приводил в среднем к заключению о нескольких сотнях высокоразвитых цивилизаций, и, во всяком случае, верхняя граница этой величины была порядка 20 тысяч.
Колебания результатов, от десятка до миллиона, в общем-то, неплохо отражают недоопределенность проблемы, отсутствие необходимых данных. Но не будем забывать, что мы сознательно взялись за скользкую задачу преодоления уникальности, отталкиваясь от единственного примера, и попробуем как-то продолжить обсуждение.
Не следует удивляться некоторому расхождению результатов, отмеченных выше, с тем, что рассматривалось в предыдущем разделе. «Бюраканцы» не ограничивались постановкой задачи на выделение чего-то очень близкого к земному. Формулу Дрейка можно представить в виде, очень похожем на тот, с которым мы уже имели дело:
Ncont = NGal.PHP.PlPiPc.L/TGal = Nc. L/TGal
Здесь просто выделен множитель L/TGal (за счет разбиения R = NGal/TGal), характеризующий средний процент цивилизаций доступных Контакту в каждый момент существования Галактики. PHP можно оценить и единицей, если иметь в виду любые — знакомые и незнакомые формы жизни.
На данном этапе нас интересует Nc — число технологически развитых цивилизаций, которые когда-либо существовали в Галактике, причем пока будем ограничиваться более или менее похожими на Землю случаями. Следовательно, отталкиваясь от полученной в предыдущем разделе оценки числа планет с развитой жизнью — 10 млн., попробуем оценить Nc, то есть факторы Pi и Pc.
Строго говоря, следовало бы разбить промежуток от довольно простых форм жизни до человека на отдельные участки и оценивать каждый из переходов. Видимо, путь, связанный с мутациями, ведущими к развитию мозга, довольно естественен. Во всяком случае, такие мутации положительно закрепляются, ибо способствуют выживанию вида. Поэтому практически единственное, что следовало бы оценить, — это частота мутаций, способствующих усилению функций мозга при не слишком сильном отрицательном воздействии на иные функции организма. Наверняка условия для них создаются заметно реже, чем, скажем, в случае перехода от элементарных эукариотов к многоклеточным, зато темп закрепления в первом случае, конечно, выше. Здесь опять-таки придется спрятать наше незнание многих обстоятельств за более или менее правдоподобным фактором 0,1.
К Pc относятся похожие замечания. Мы знаем немало земных сообществ, которые так и не перешли в стадию технологических цивилизаций. При всем том, например, охотники неплохо уравновесились в лесах и саваннах, и у нас нет особых оснований считать, что такие племена не могли бы просуществовать сколь угодно долго, не меняя своего уклада, разумеется, в условиях изоляции. Однако в самом разуме содержится взрывчатка — при подходящих условиях охотники способны сильно нарушить экологическое равновесие, перенаселив свой ареал. У животных в такой ситуации срабатывает обычный механизм экологического регулирования — их численность резко падает. Разум же способен использовать иной путь, увеличивая давление на окружающую среду и извлекая из нее избыточный продукт. Речь идет о земледелии и скотоводстве — способах хозяйствования, почти неизбежно приводящих к цивилизации в областях с достаточно высокой плотностью населения.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Открытие Вселенной - прошлое, настоящее, будущее"
Книги похожие на "Открытие Вселенной - прошлое, настоящее, будущее" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Александр Потупа - Открытие Вселенной - прошлое, настоящее, будущее"
Отзывы читателей о книге "Открытие Вселенной - прошлое, настоящее, будущее", комментарии и мнения людей о произведении.