» » » » Г Гутнер - Онтология математического дискурса


Авторские права

Г Гутнер - Онтология математического дискурса

Здесь можно скачать бесплатно "Г Гутнер - Онтология математического дискурса" в формате fb2, epub, txt, doc, pdf. Жанр: Философия. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Рейтинг:
Название:
Онтология математического дискурса
Автор:
Издательство:
неизвестно
Жанр:
Год:
неизвестен
ISBN:
нет данных
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Онтология математического дискурса"

Описание и краткое содержание "Онтология математического дискурса" читать бесплатно онлайн.








В книге Гильберта и Бернайса [18] также есть описание финитного метода рассуждения. Важным уточнением по отношению к определению Эрбрана является, прежде всего, указание на наглядность финитного объекта. Лучшим примером, иллюстрирующим эту наглядность, является рассуждение, проводимое в формальной алгебре ([18], c. 56-58). Имея запас букв (переменных) и специальных знаков, мы, действуя в рамках этой дисциплины, конструируем объекты (полиномы), руководствуясь заранее заданными правилами. Начиная с простейших объектов, состоящих из одной буквы, мы можем построить множество разнообразных и весьма сложных объектов. В рамках, обусловленных правилами процедур, могут доказываться различные утверждения и устанавливаться свойства конструируемых объектов. Но каким бы ни было проводимое рассуждение, его справедливость может быть проверена наглядно, поскольку оно всегда непосредственно представлено перед глазами. Узнать что-либо о предмете означает построить его, любой предмет алгебры возникает под руками исследователя и процедура его возникновения полностью доступна наблюдению. Финитное рассуждение характеризуется в [18] как "прямое содержательное рассуждение, совершающееся в виде мысленных экспериментов над наглядно представимыми объектами." (с. 59).

Если бы, занимаясь математикой, мы могли бы постоянно оставаться в рамках финитного рассуждения, то естественно было бы понимать существование математического объекта в смысле его конструктивности. Однако предметы математики очень часто не являются финитными объектами. В [18] приводится целый ряд примеров того, как в математике возникают предметы, которые невозможно сконструировать и которые не могут быть представлены наглядно. Уже арифметика требует использования нефинитных рассуждений, прибегая к "tertium non datur" для обоснования высказываний о целых числах. Число, о свойствах которого мы судим на основании закона исключенного третьего, не представлено наглядно, и может не быть доступно конструированию с помощью конечной процедуры (с. 62-64).

Математический анализ, в его классическом изложении, практически полностью основан на рассуждениях о нефинитных предметах. Нефинитным является действительное число (о чем мы говорили выше), определяемое через бесконечную совокупность целых чисел (с. 64-67). Но анализ не ограничивается рассмотрением бесконечной совокупности целых чисел - он обращается к предметам "еще более нефинитным" (если можно так выразиться), рассматривая бесконечные совокупности действительных чисел в качестве актуально данных предметов. Рассуждения, используемые при этом, никак не могут апеллировать к наглядности. Естественно, что обращение к конструктивности, как критерию существования, оказывается бессмысленным для математического анализа. Говоря точнее, этот критерий заставляет считать названные (нефинитные) предметы своего рода химерами, странными измышлениями математиков, которые попросту не существуют.

Такой жесткий вывод и был, собственно, сделан интуиционистской школой, реализация программы которой состояла в значительном урезании всей математики. Намерение Гильберта было прямо противоположным: обосновать корректность тех частей математики, для которых существенно обращение к принципиально нефинитным предметам. Видимо это и обусловило его обращение к той интерпретации существования, которая была в свое время предложена Пуанкаре. Разработанный Гильбертом аксиоматический подход позволял достаточно ясно сформулировать, что означает свобода от противоречия в качестве критерия существования (см. выше - о существовании совокупности действительных чисел). Доказательство существования, таким образом превращалось в доказательство непротиворечивости системы аксиом. То, как Гильберт предполагал доказывать непротиворечивость, придает понятию финитности совершенно новый смысл.

Суть стратегии Гильберта сводилась к тому, чтобы, формализовав основные методы рассуждения в математике, установить их непротиворечивость путем анализа самого рассуждения (См, напр,[11], [12], [14], [18], [50], [55], [62]). Объектом изучения стали не математические предметы, а рассуждения об этих предметах. Но рассуждение в математике, как и всякое человеческое рассуждение вообще, даже будучи обращено к бесконечному предмету, само остается конечным. Поэтому наука, изучающая рассуждения, названная Гильбертом метаматематикой, по определению имеет дело только с финитным объектом. Сама математика может сколько угодно оперировать с бесконечностью. Но это ее оперирование будет всегда выражено в виде конечного текста, записанного по определенным правилам. Требование наглядности оказывается здесь особенно важным. Мы можем быть уверены в производимых нами математических рассуждениях, если доказана их непротиворечивость. Доказательство же непротиворечивости, производимое на метауровне, может и должно быть наглядным, непосредственно очевидным. Объект, конструируемый в ходе метарассуждения, возникает у нас на глазах и его свойства (в частности, свойство непротиворечивости) оказывается наглядно представимым и непосредственно проверяемым. Здесь особую роль играет знаковая природа математического рассуждения. В нем любой (в том числе и бесконечный) предмет представлен знаком, конечным, более того, чувственным, доступным непосредственному восприятию объектом. Это обстоятельство специально подчеркивалось Гильбертом: "Кое-что уже дано в нашем представлении для применения логических выводов и для выполнения логических операций: объекты, которые имеются в созерцании до всякого мышления в качестве конкретных переживаний. Для того, чтобы логические выводы были надежны, эти объекты должны быть обозримы полностью, во всех частях; их показания, их отличия, их следование, расположение одного из них наряду с другим дается непосредственно, наглядно, одновременно с другими объектами, как нечто такое, что не может быть сведено к чему-либо другому и не нуждается в таком сведении..." И далее: "В математике предметом нашего рассмотрения являются конкретные знаки сами по себе, облик которых, согласно нашей установке, непосредственно ясен и может быть впоследствии узнан" ([15], c. 351).

Таким образом, по отношению к метаобъекту Гильберт предъявляет требования, пожалуй, более жесткие, чем Брауэр по отношению ко всем объектам математики. Последний не настаивает на "наглядности". Гильберт и Бернайс характеризуют установки интуиционизма как "расширение" финитной установки ([18], c. 71). При этом важно, что в конечном счете гильбертовская математика также основывается на определенных базовых интуициях. Френкель и Бар-Хиллел указывают, что такими интуициями для Гильберта являются первичные представления о тождестве и различии, а именно о самотождественности знака, который должен быть опознан как один и тот же при разных вхождениях в формулы и при этом отлич?н от всякого другого знака. Действительно, всякое конструирование объекта, коль скоро оно сводится к комбинирований некоторых элементарных конфигураций, подразумевает, прежде всего, способность видеть различия между разными конфигурациями и уверенно опознавать одну и ту же в различных обстоятельствах. Здесь однако уместны следующие два замечания. Во-первых, названные элементарные конфигурации, строго говоря, не являются уже знаками. Точнее, они могут быть названы знаками в силу их происхождения, поскольку именно в качестве знака выступали для математического рассуждения. В нем они действительно обозначают нечто иное - математический объект, о котором ведется рассуждение. Но как только само математическое рассуждение превращается в объект, т.е. становится предметом метаматематического рассуждения, эти знаки уже ничего не обозначают. Они выступают лишь как первичные структурные элементы, из которых складывается, как из деталей конструктора, исследуемое математическое рассуждение.

Во-вторых, сами эти знаки (или псевдо-знаки) очевидно оказываются объектами. Они конструируются как некоторые графические конфигурации и в качестве таковых уже сами являются предметами рассуждения. Здесь необходимо вернуться к вопросу о тождестве и различии, которые у Френкеля и Бар-Хиллела названы первичными интуициями формальной математики. Такой подход к интерпретации элементарных объектов метаматематического рассуждения был подвергнут критике, например, в [57], где проблема тождества и различия рассмотрена как чисто логическая и не нуждающаяся в ссылках на интуицию. Мы предпочитаем подойти к этому вопросу иначе. Различение знаков подразумевает возможность вынесения определенного суждения о тождестве или различии тех или иных элементарных графических конструкций. Знак или комбинация знаков становится субъектом метаматематического суждения, тогда как тождество или различие выступает его предикатом. Причем этот предикат присоединяется в суждении к субъекту в зависимости от того, как именно построена (начерчена) данная конфигурация. Например, суждение о том, что графические конфигурации 'n' и 'n', находящиеся в двух различных позициях формулы xn=2n, тождественны, основано на том, что оба знака построены сообразно одной и той же графической схеме. Таким образом, вопрос о тождестве или различии конструктивных элементов математического рассуждения решается с помощью суждения, которое, впрочем, находится в жесткой корреляции с процедурой построения наглядно представимого, зримого предмета. Тот факт, что отождествляя или различая знаки, мы как правило не делаем никаких суждений, не меняет ситуацию в принципе. Возможность такого суждения всегда присутствует. Акт различения или отождествления знаков не является некоторым первичным, неразложимым актом. Он действительно выражается на логическом уровне. Первичной интуицией является здесь пространство, поскольку именно в качестве определенной пространственной конфигурации всякий знак может быть узнан и отличен от другого.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Онтология математического дискурса"

Книги похожие на "Онтология математического дискурса" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Г Гутнер

Г Гутнер - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Г Гутнер - Онтология математического дискурса"

Отзывы читателей о книге "Онтология математического дискурса", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.