Алексей Лосев - Итоги тысячелетнего развития, кн. I-II

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.
Описание книги "Итоги тысячелетнего развития, кн. I-II"
Описание и краткое содержание "Итоги тысячелетнего развития, кн. I-II" читать бесплатно онлайн.
Последний, итоговой том грандиозного исследования Лосева. Он посвящен двум задачам. Первая: описать последнюю стадию античной мысли, именно ее переход в средневековую, слом античности и формирование совершенно новой эстетики: патристика Востока и Запада и "переходные" "синтетические" формы: халдеизм, герметизм, гностицизм.
Вторая задача восьмого тома - подвести итог вообще всей "эпопее", в этом смысле "Итоги" можно считать чем-то вроде конспекта ИАЭ. Все основные "сюжеты" здесь есть, даются итоговые формулировки, строится целостная картина античной эстетики как таковой, система ее категорий как кратко в ее истории, так и по существу.
Источник электронной публикации: http://psylib.ukrweb.net/books/lose008/index.htm
В этом отношении мы и считаем полезным изучение фрагментов, Евдокса. Свое учение о бесконечно малых приближениях и, следовательно, об иррациональности он иллюстрирует простейшими геометрическими построениями, в интуитивной телесности которых никто не может сомневаться.
Например, у него поднимается вопрос об удвоении куба (фрг. D 24 – 29). Чтобы читатель мог быстрее понять, в чем здесь дело, скажем, что если мы имеем исходный куб, ребро которого равняется 1, то ребро двойного по объему куба будет равняться корню кубическому из 2, то есть величине в полном смысле иррациональной. Как же так? И исходный куб и двойной по объему куб одинаково есть тела видимые или представляемые, и тем не менее ребро удвоенного куба почему то вдруг оказалось иррациональной величиной, достигнуть которую невозможно ни при каком количестве приближений.
Возьмем другой пример. Площади кругов относятся между собою как квадраты, построенные на их диаметрах (фрг. D 59). Но круг – это не только иррациональная величина. Его площадь вычисляется при помощи, величины"p", которая даже сложнее всякой иррациональности. И что же оказывается? Оказывается, что отношение этих сверхиррациональных площадей круга есть не что иное, как отношение квадратов, построенных на диаметрах этих кругов, а в этих квадратах ровно нет ничего иррационального или недостижимого, нет никакой непостигаемой бесконечности, которую необходимо было бы иметь в виду в представлении об этих квадратах.
Возьмем еще пример. Объем конуса равняется одной трети объема цилиндра с теми же основанием и высотой (фрг. D 62). Пересекая конус плоскостями, параллельными его основанию, мы, по мере приближения к вершине, будем получать все меньшие и меньшие окружности. И сколько бы мы их ни уменьшали, мы никогда не можем довести их до нуля. И только путем выхода из этого процесса становления, то есть только путем скачка, мы можем получить окружность, по своей площади равную нулю, то есть, оказаться в вершине конуса. Следовательно, конус тоже представим только при помощи бесконечно малого сближения рассекающих его окружностей, параллельных его основанию. Что же касается тезиса о равенстве конуса одной трети цилиндра с теми же основанием и высотой, то одна треть получается здесь потому, что пирамида имеет своим пределом конус, а призма имеет своим пределом цилиндр. Следовательно, и здесь принцип исчерпывания тоже играет главную роль. Также и из конуса, путем постепенного уменьшения угла при его вершине, мы в конце концов приходим к цилиндру, в котором образующие являются уже параллельными одна другой.
Итак, все обычные континуальные представления возникают у Евдокса всегда совместно с устойчивыми и четко расчлененными формами, как их всегда становящаяся и текуче–сущностная сторона. То же самое мы находим и у других представителей античного инфинитезимализма, обладавшего всегда интуитивной, если не прямо геометрической, то есть отчетливо выраженной, телесной структурой.
г) У Евклида (IV – III века до н. э.) в его знаменитых"Элементах"(Х, предложение 1) мы прямо читаем (Мордухай–Болтовской):"Для двух заданных неравных величин, если от большей отнимается больше половины и от остатка больше половины и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины". Ту же самую идею мы находим и в другом положении Евклида (XII 2), где говорится о недостижимости периметра окружности при любом увеличении количества сторон вписанного в него многоугольника. Спорить невозможно: здесь мы имеем яснейшее (но, правда, по преимуществу только интуитивное) определение того, что в современной математике называется теорией бесконечно малых. Тут только необходимо добавить, что было бы ошибочно считать этот принцип чуждым самому Евклиду на том основании, что Евклид занимается неподвижно кристаллизованными геометрическими образами. Такое резкое противопоставление античной геометрии, с одной стороны, и теории бесконечно малых, с другой стороны, совершенно чуждо античному представлению о числе. Евклид прекрасно разбирается в иррациональных величинах, умеет их определять как лишенные общей с рациональными величинами меры и созерцает их на своих вполне кристаллизованных геометрических фигурах.
И в самом деле, почему мы должны считать неантичным умение различать диагональ квадрата от стороны квадрата? А ведь мы уже сказали выше, что если сторону квадрата считать равной единице, то диагональ квадрата будет √2. И то, что подобного рода корень невыразим никаким рациональным отношением натуральных чисел, в этом тоже нет ничего ужасного. Поэтому теория бесконечно малых, как она представлялась Евклиду, нисколько не мешает его геометризму, а, наоборот, делает его насыщенным и полноценным.
Мы бы привлекли еще знаменитое имя Архимеда (III век до н. э.), который тоже был у самого порога учения о непрерывном становлении, хотя, по–видимому, и не перешагнул этого порога. В начале своего трактата"Исчисление песчинок"Архимед утверждает, что, какое бы количество песчинок ни заполняло космос (это количество он измеряет мириадами мириад), такое количество можно увеличивать до бесконечности. В скрытой форме тут тоже мыслится вышеприведенный тезис Евдокса Книдского, но Архимед в данном случае не входит в точный анализ этого предмета.
Однако в других своих сочинениях Архимед несомненно подходил к учению о бесконечно малых гораздо ближе. Так, в работе"О шаре и цилиндре"(I 6 Heib. — Stam.) Архимед ссылается на указанное у нас выше положение Евклида (XII 2), то с применением этого положения к соотношению цилиндра и шара. Та же самая идея проводилась у Архимеда и во вступлении к трактату"Квадратура параболы"(II 264, 5 – 26 Heib. — Stam.).
3. Общая схема развития учения о континууме накануне окончательных философских формулировок
а) Итак, после серьезного учета приведенных у нас материалов о континууме уже никто не может сомневаться в чрезвычайной важности самой категории континуума в течение решительно всей греческой классики и в значительной мере и в течение всего тысячелетнего периода. То, что в основе античной философии лежат чисто телесные интуиции, в настоящее время почти не вызывает никаких сомнений; а в последние два столетия (после Винкельмана), когда в античности выдвигалась на первый план скульптурность, такая исходная телесная интуиция признавалась еще больше. Но в эти же два последние столетия европейской науки почти совсем не говорили о большой значимости для античности чисто континуальных интуиций.
А ведь всякое физическое тело обязательно находится в пространстве, то есть всякая прерывно мыслимая величина обязательно требует для себя также и фона, который уже непрерывен, и требует присутствия целости вещи в каждой отдельной части этой целости, то есть непрерывность мыслится не только в виде фона, окружающего всякую вещь, но и в виде внутренней неделимости вещи, то есть и внутри вещи прерывность тоже требует для себя непрерывного охвата всего, что в ней дано прерывно.
Поэтому мы и считали бы, что античный континуум заслуживает в настоящее время весьма внимательного и специального изучения. Сейчас нам хотелось бы воспользоваться таблицей H. — J. Waschkies'a[227], который попытался дать схему развития понятия континуума от Парменида до Аристотеля, то есть в течение того периода, который мы называем ранней и зрелой классикой. Изъяснению этой таблицы посвящена, собственно говоря, вся книга этого автора. Но мы дадим ее здесь (ниже, часть шестая, глава II, §4, п. 4) с той интерпретацией, которая нам представляется более удобной.
б) Если поставить вопрос о том, у кого впервые возникло понятие континуума и даже сам термин"континуум"(syneches), то это, конечно, будет не кто иной, как Парменид. От Парменида исходят три разных направления мысли с использованием этого понятия.
Первые два направления противоположны одно другому. Зенон (элейский) больше напирает на чистую непрерывность, которая дана у него то ли прямо в виде его общеизвестных апорий, то ли в виде объединения непрерывности с прерывностью, но все же с преобладанием непрерывности (фрг. B 2). С другой стороны, необходимо иметь в виду и вообще всех досократовских философов, которые в целях достижения целостного представления тоже стараются объединить непрерывное с прерывным, но уже с преобладанием прерывности.
Однако, если в этот ранний период греческой философии в одних случаях преобладала непрерывность, а в других – прерывность, то естественно ожидать, что в период классики были также и попытки представлять непрерывное и прерывное в их равновесии. Эту равновесную тенденцию мы и находим в диалектике Платона, что необходимо считать уже третьей линией развития исходного парменидовского учения.
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!
Похожие книги на "Итоги тысячелетнего развития, кн. I-II"
Книги похожие на "Итоги тысячелетнего развития, кн. I-II" читать онлайн или скачать бесплатно полные версии.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Отзывы о "Алексей Лосев - Итоги тысячелетнего развития, кн. I-II"
Отзывы читателей о книге "Итоги тысячелетнего развития, кн. I-II", комментарии и мнения людей о произведении.