» » » » Александр Марков - Эволюция. Классические идеи в свете новых открытий


Авторские права

Александр Марков - Эволюция. Классические идеи в свете новых открытий

Здесь можно купить и скачать "Александр Марков - Эволюция. Классические идеи в свете новых открытий" в формате fb2, epub, txt, doc, pdf. Жанр: Биология, издательство АСТ: CORPUS, год 2014. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Александр Марков - Эволюция. Классические идеи в свете новых открытий
Рейтинг:
Название:
Эволюция. Классические идеи в свете новых открытий
Издательство:
неизвестно
Жанр:
Год:
2014
ISBN:
978-5-17-083218-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Эволюция. Классические идеи в свете новых открытий"

Описание и краткое содержание "Эволюция. Классические идеи в свете новых открытий" читать бесплатно онлайн.



Что такое польза? Как случайная мутация превращает аутсайдеров в процветающих победителей? Что важнее для эволюции — война или сотрудничество?

Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.

Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.






Для таких экспериментов нужно тщательно выбирать подходящие лабораторные объекты и знать, куда смотреть. Последнее зависит от того, какие именно эволюционные события мы надеемся увидеть. Конечно, не превращение мухи в слона[48]. Обычно экспериментаторы надеются увидеть любую наследуемую адаптацию к окружающим условиям, дающую выигрыш в эффективности размножения. Если на наших глазах объект сумел адаптироваться к предложенным условиям и передал новые свойства потомкам, значит, мы увидели самую настоящую эволюцию. Осталось разобраться, как именно он это сделал, какие получил мутации.

Никто, конечно, не проводит эволюционные эксперименты на баобабах и слонах. Любому исследователю хочется дожить до результатов своего опыта. А ведь нужно еще ежегодно отчитываться перед работодателями, иначе вас выгонят с работы или не продлят финансирование по гранту. «Баобабы на нашей плантации подросли еще на полметра, лет через 50 надеемся получить первые семена» — за такой годовой отчет вас по головке не погладят. Но вот, например, бактерии, у которых смена поколений происходит несколько раз в сутки, — превосходный объект для эволюционных экспериментов. Годятся дрожжи Saccharomyces cerevisiae, круглые черви C. elegans, насекомые, растения с коротким жизненным циклом, аквариумные рыбки, шпорцевые лягушки и другие быстро плодящиеся существа. Но с бактериями работать проще всего, и не только из-за рекордной скорости смены поколений. Немаловажно и то, что многомиллионная популяция запросто помещается в одной колбе.

В этой главе мы разберем, какие эволюционные процессы можно наблюдать своими глазами в лаборатории или в природе. Такие наблюдения подобны процессу препарирования: разрезая лягушку, примерно знаешь, что там будет внутри, но детали строения всегда неожиданны и информативны.

Приспособленность меняется постепенно

Начнем с самого масштабного и самого известного эволюционного эксперимента. В 1988 году группа биологов из Университета штата Мичиган под руководством Ричарда Ленски начала — и продолжает по сей день — уникальный эксперимент на бактериях, который позволил с небывалой доселе детальностью проследить ход эволюции как на уровне генома (накопление мутаций), так и на уровне целого организма (развитие адаптаций).

Эксперимент проводится параллельно с 12 популяциями кишечной палочки Escherichia coli. Эта бактерия — обычный обитатель кишечника теплокровных животных, включая человека. Все 12 подопытных популяций живут в аэробных условиях[49] в жидкой прозрачной среде, где единственной пищей является глюкоза. Именно количество глюкозы является лимитирующим фактором, ограничивающим размножение микробов. С интервалом в сутки из каждой популяции берут небольшую часть (0,1 мл содержимого колбы) и пересаживают в новую колбу с 9,9 мл свежей питательной среды. Там бактерии быстро размножаются, пока не исчерпают запасы глюкозы. Таким образом, в течение каждого суточного цикла начальный период изобилия, когда численность популяции быстро растет, сменяется периодом голода, когда бактерии перестают размножаться и их численность стабилизируется. Численность бактерий оценивают по мутности среды — обычный и весьма надежный метод при наличии соответствующего оборудования.

Периодически часть каждой популяции замораживают при −80 °C (что ничуть не вредит здоровью микробов) и сохраняют для последующего изучения. Это мудро, потому что аналитические методики — в том числе методики секвенирования («прочтения») геномов — сейчас стремительно развиваются и столь же стремительно дешевеют.

Регулярно проводится и оценка приспособленности. Для этого сравнивают скорость размножения подопытных и контрольных бактерий, причем в роли вторых выступают размороженные предки первых — исходный штамм, из которого были взяты родоначальники всех 12 экспериментальных популяций.

Кишечные палочки выгодно отличаются от баобабов тем, что позволяют Ленски и его коллегам ежегодно получать интересные результаты и публиковать статьи в ведущих журналах. Так, в 2009 году они опубликовали в Nature отчет об эволюции одной из 12 популяций (Barrick et al., 2009). К этому времени длительность эксперимента уже была достаточной для того, чтобы каждая из возможных точечных мутаций (нуклеотидных замен) успела произойти в популяции более одного раза[50].

Авторы следили за темпом закрепления мутаций и изменением приспособленности. Напомним, что возникновение мутации и ее закрепление — не одно и то же. Далеко не всякая возникшая мутация закрепляется (фиксируется) в популяции. Каждая мутация изначально возникает только у одного микроба. Чтобы мутация зафиксировалась, т. е. достигла 100-процентной частоты, потомки этого микроба должны вытеснить всех остальных микробов в своей колбе. Вредная мутация, скорее всего, будет отсеяна отбором. Полезная мутация под действием отбора может закрепиться, но может и случайно потеряться, пока ее носители еще не успели как следует размножиться. Наконец, нейтральные мутации должны фиксироваться с постоянной скоростью, равной скорости мутирования (обо всем этом мы говорили в главе 1).

За первые 20 тыс. поколений в подопытной популяции зафиксировалось 45 мутаций, в том числе 29 однонуклеотидных замен и 16 иных мутаций (вставок, выпадений, инверсий, встраиваний мобильных элементов). Самое интересное, что скорость накопления мутаций на этом этапе была постоянной. Приспособленность вела себя иначе: сначала она быстро росла, а затем ее рост замедлился (см. рисунок).

Постоянная скорость фиксации, согласно теории, характерна для нейтральных мутаций. Однако все 45 мутаций не могли быть нейтральными. Ясно, что по крайней мере некоторые из них были полезными — об этом свидетельствует рост приспособленности. Полученные результаты трудно увязать и с гипотезой о том, что все 45 мутаций были полезными. Ведь в этом случае обе величины — приспособленность и число накопленных мутаций, — скорее всего, должны были бы меняться сходным образом, т. е. или расти с постоянной скоростью, или параллельно замедляться.

Простейшее объяснение состоит в том, что среди 45 зафиксировавшихся мутаций большинство были нейтральными, а некоторые — полезными. Основная масса полезных мутаций зафиксировалась вскоре после начала эксперимента, т. е. после попадания микробов в новые для них условия, к которым они были плохо приспособлены. Но возможности для «полезного мутирования» быстро исчерпались, и в дальнейшем фиксировались в основном нейтральные мутации.

Есть, однако, четыре аргумента против такого объяснения.


1. В случае преобладания нейтральных мутаций должно быть повышено число синонимичных нуклеотидных замен. Вопреки этим ожиданиям все без исключения зафиксировавшиеся мутации в кодирующих областях генов оказались значимыми (несинонимичными). Резкое преобладание значимых замен над синонимичными — это характернейшая «подпись», оставляемая в геноме положительным отбором.

2. В случае преобладания нейтральных мутаций следует ожидать, что во всех 12 экспериментальных популяциях за 20 тыс. поколений мутации зафиксировались в разных генах. Напротив, мутации в одних и тех же генах, закрепившиеся независимо в разных популяциях, будут доводом в пользу того, что мутации фиксировались под действием положительного отбора, а не генетического дрейфа (т. е. мутации были полезными). Чтобы проверить это, авторы отсеквенировали у бактерий поколения № 20 000 из остальных одиннадцати экспериментальных популяций 14 генов, в которых у первой популяции закрепились мутации. Оказалось, что в большинстве случаев в других популяциях эти гены тоже изменились.

3. Если бы большинство мутаций были нейтральными, наблюдалась бы значительная внутрипопуляционная изменчивость по этим локусам (потому что полезные мутации под действием отбора фиксируются быстро, а нейтральные сначала должны долго «случайно блуждать» между нулевой и 100-процентной частотой). Это предположение не подтвердилось.

4. При помощи генной инженерии авторы смогли напрямую определить степень полезности девяти мутаций из рассматриваемых 45. Эти мутации искусственно внедряли в геном предкового штамма. В восьми случаях из девяти приспособленность бактерий резко повысилась[51]. Что касается девятой мутации, то авторы думают, что она тоже полезна, но не сама по себе, а в сочетании с другими мутациями, потому что точно такая же мутация закрепилась у других подопытных популяций.


Накопление мутаций (черные линии и кружки) и рост приспособленности (серые линии и квадраты) в экспериментальной популяции. По горизонтальной оси — номер поколения. Видно, что число зафиксировавшихся мутаций росло линейно (тонкие ломаные линии очерчивают 95-процентные доверительные интервалы линейной модели). Приспособленность сначала росла очень быстро, а потом ее рост замедлился. «Прыжки» серых квадратов вверх и вниз относительно серой линии не выходят за пределы статистической погрешности, т. е. не требуют специальных объяснений. На маленьком графике в правом нижнем углу показано резкое ускорение накопления мутаций начиная примерно с поколения № 26 000, когда в популяции зафиксировалась мутация, повышающая темп мутагенеза. Из Barrick et al., 2009.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Эволюция. Классические идеи в свете новых открытий"

Книги похожие на "Эволюция. Классические идеи в свете новых открытий" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Александр Марков

Александр Марков - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Александр Марков - Эволюция. Классические идеи в свете новых открытий"

Отзывы читателей о книге "Эволюция. Классические идеи в свете новых открытий", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.