» » » » Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.


Авторские права

Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь можно скачать бесплатно "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." в формате fb2, epub, txt, doc, pdf. Жанр: Математика, издательство «Де Агостини», год 2014. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Рейтинг:
Название:
Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.
Издательство:
«Де Агостини»
Год:
2014
ISBN:
978-5-9774-0730-4
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Описание и краткое содержание "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать бесплатно онлайн.



В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.






соль

соль-диез

фа-диез

ми

ре-диез

ля-диез

до-диез

до

ре-диез

ре

фа-диез

си

соль-диез

ля

соль

фа

ми

125

Как вы уже видели, эта таблица содержит ту же информацию, что и таблица

[0]

[3]

[2]

[5]

[4]

[8]

[1]

[10]

[11]

[9]

[7]

[6]

[9]

[0]

[11]

[2]

[1]

[5]

[10]

[7]

[8]

[6]

[4]

[3]

[10]

[1]

[0]

[3]

[2]

[6]

[11]

[8]

[9]

[7]

[5]

[4]

[7]

[10]

[9]

[0]

[11]

[3]

[8]

[5]

[6]

[4]

[2]

[1]

[8]

[11]

[10]

[1]

[0]

[4]

[9]

[6]

[7]

[5]

[3]

[2]

[4]

[7]

[6]

[9]

[8]

[0]

[5]

[2]

[3]

[1]

[11]

[10]

[11]

[2]

[1]

[4]

[3]

[7]

[0]

[9]

[10]

[8]

[6]

[5]

[2]

[5]

[4]

[7]

[6]

[10]

[3]

[0]

[1]

[11]

[9]

[8]

[1]

[4]

[3]

[6]

[5]

[9]

[2]

[11]

[0]

[10]

[8]

[7]

[3]

[6]

[5]

[8]

[7]

[11]

[4]

[1]

[2]

[0]

[10]

[9]

[5]

[8]

[7]

[10]

[9]

[1]

[6]

[3]

[4]

[2]

[0]

[11]

[6]

[9]

[8]

[11]

[10]

[2]

[7]

[4]

[5]

[3]

[1]

[0]

ЛЕВИ-СТРОСС: На основе додекафонической таблицы, подобной той, которую мы только что составили, можно написать такую мелодию:

С одной стороны, на нижнем нотном стане в ключе фа записана основная последовательность нот из первой строки, на основе которых мы получили все остальные ноты. С другой стороны, на верхнем нотном стане записаны две мелодии: первая, состоящая из более низких звуков, соответствует второму столбцу таблицы, вторая, состоящая из более высоких звуков,— первой строке, прочитанной справа налево.

Число возможных вариантов практически бесконечно!

ВЕЙЛЬ: Так сегодня звучит музыка сфер.

ЛЕВИ-СТРОСС: И так мы будем слушать ее до тех пор, пока алгебра не разлучит нас.

126

Приложение

Конечные абелевы группы с двумя порождающими элементами[1]

В этом приложении приведено полное доказательство теоремы о структуре конечных абелевых групп с двумя порождающими элементами, которую упоминает Андре Вейль в диалоге с Клодом Леви-Строссом на стр. 73.

Теорема. Конечная абелева группа, порожденная двумя элементами, изоморфна либо циклической группе, либо прямому произведению двух циклических групп.

Прежде чем перейти к доказательству, напомним, что такое изоморфизм групп, о котором мы вкратце упоминали на стр. 57.

Изоморфизм групп

Пусть G и Н — две группы. Обозначим их групповые операции * и · соответственно. Обозначим нейтральные элементы групп через еG и еH.

Определение. Гомоморфизм групп G и Н — это функция φ: G → Н, которая каждому элементу g группы С ставит в соответствие элемент φ(g) группы Н (отображение g) так, что при этом...

Если мы найдем отображение результата операции над двумя элементами С, а затем сначала применим φ к каждому элементу, после чего найдем результат операции на Н, то результат в обоих случаях будет одинаков: φ(а * * b) = φ(а) · φ(b).

Приведем два следствия из этого определения. Отображением нейтрального элемента G, заданным функцией ф, должен быть нейтральный элемент Н: ф(еG) = еH.

127

Так как еG * еG = еG, имеем φ(еG) = ф(еG) · ф(еG). Применив закон сокращения (см. стр. 58), мы можем сделать вывод: ф(еG) = еH. Также заметим, что гомоморфизм «сохраняет» обратные элементы: ф(g-1) = ф(g)-1 для любого g на группе G.

В самом деле, g * g-1 = еG, следовательно, ф(g*g-1) = ф(еG) = еH в соответствии с доказанным выше. С другой стороны, по определению гомоморфизма ф(g*g-1) = ф(g) · ф(g-1). Из этих двух утверждений следует: ф(g) · ф(g-1) = еH — это равенство по-прежнему будет верным, если мы поменяем местами ф(g) и ф(g-1). Следовательно, ф(g) — обратный элемент ф(g-1).

Гомоморфизмы играют важнейшую роль при сравнении двух различных групп между собой. Особо выделим один частный случай, в котором две группы по своей структуре неразличимы, как, например, симметрическая группа S3 и группа преобразований, оставляющих неизменным равносторонний треугольник (стр. 56). Чтобы выразить эквивалентность структур формально, было введено понятие изоморфизма.

Определение. Гомоморфизм ф: G → Н называют изоморфизмом групп, если выполняются следующие условия.

(1) Инъективность. Если а и b — два различных элемента G, то φ(а) и φ(b) — два различных элемента Н.

(2) Сюръективность. Каждый элемент Н является отображением некоторого элемента G, то есть для любого h группы Н существует такой элемент g группы G, что р(g) = h.

В силу свойств гомоморфизма нетрудно видеть, что инъективность эквивалентна другому условию, которое проще проверить на практике.

(1') Единственный элемент G, который отображение φ преобразует в нейтральный элемент Н, это нейтральный элемент G. Иными словами, если φ(g) = eH, то g = eG.

В самом деле, предположим, что выполняется условие (1) и что φ(g) = eH. Так как р — гомоморфизм, мы знаем, что ф(eG) = еH, следовательно g обязательно должен совпадать с eG — в противном случае два различных элемента будут иметь одинаковые отображения. Посмотрим, что произойдет, когда выполняется свойство

128

(1'). Пусть a и b — два элемента С такие, что φ(а) = φ(b). Мы хотим доказать, что а = b. Сначала применим закон сокращения (см. стр. 58) и перепишем равенство в виде φ(а) *φ(b)-1 = еH. Так как φ — гомоморфизм, ф(b)-1 совпадает с φ(b-1) и φ(а) · φ(-1) = φ(а * b-1). Следовательно, φ(а * b-1) = eH и из (1') следует, что а * b-1= eG. Умножив обе части на b, получим, что а = b.

В ходе доказательства полезно отметить: чтобы показать, что данный гомоморфизм двух конечных групп одного и того же порядка (то есть для групп с одинаковым числом элементов) — это изоморфизм, достаточно проверить, что выполняется всего одно из двух свойств (инъективность или сюръективность), и второе будет выполняться автоматически (докажите это утверждение самостоятельно).

Также упомянем следующее предложение.

Предложение. Гомоморфизм ф: С → Н является изоморфизмом тогда и только тогда, когда существует другой гомоморфизм ψ: G → Н такой, что результатом последовательного применения φ и ψ является тождественное преобразование на группе G (то есть преобразование, которое оставляет все элементы С неизменными); это же верно для композиции φ и ψ на группе Н.

Для данного φ функция ψ определяется как функция, которая каждому элементу h группы Н ставит в соответствие единственный элемент g группы G такой, что φ(g) = h.

Две группы G и Н называются изоморфными, если между ними существует изоморфизм (обозначается G ≃ Н).

Теперь мы можем доказать теорему о структуре групп. Пусть G — конечная абелева группа, порожденная двумя элементами. Наша задача — определить изоморфизм между G и циклической группой либо прямым произведением двух циклических групп. Вначале мы покажем: всегда можно выбрать два порождающих элемента так, что порядок одного из них будет делителем порядка другого.

Как выбрать порождающие элементы

Начнем с леммы о циклических группах, порядок которых равен произведению двух взаимно простых чисел. Далее для простоты в нижнем индексе нейтральных элементов мы не будем указывать группу, к которой они принадлежат, а элементы, над которыми выполняется операция *, будем просто записывать рядом друг с другом.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Книги похожие на "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение." читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Хавьер Фресан

Хавьер Фресан - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Хавьер Фресан - Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение."

Отзывы читателей о книге "Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.