» » » » Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса


Авторские права

Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Здесь можно купить и скачать "Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство ЛитагентАСТc9a05514-1ce6-11e2-86b3-b737ee03444a, год 2016. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
Рейтинг:
Название:
Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
Автор:
Издательство:
неизвестно
Год:
2016
ISBN:
978-5-17-095136-9
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса"

Описание и краткое содержание "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса" читать бесплатно онлайн.



Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?

Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.

Книга адресована всем любознательным читателям независимо от возраста и образования.






Представления Платона заложили основу платонизма – такое название получили его идеи в философии вообще и в проблеме природы математики в частности[19]. Платонизм в самом широком смысле слова предполагает веру в некие вечные, незыблемые абстрактные объекты, абсолютно независимые от эфемерного мира, которые мы воспринимаем посредством органов чувств. Согласно платонизму, реальное существование математических понятий – столь же объективный факт, сколь и существование самой Вселенной. Существуют не только натуральные числа, окружности и квадраты, но и мнимые числа, функции, фракталы, неевклидовы геометрии, бесконечные множества, а также самые разные теоремы, которые их описывают. Короче говоря, каждое математическое понятие или «объективно истинное» суждение (подробнее об этом чуть позже), когда бы то ни было сформулированные или возникшие в чьем-то воображении, и бесконечное количество понятий и утверждений, еще не открытых, – все это абсолютные сущности, или универсалии, которые нельзя ни создать, ни уничтожить. Они существуют независимо от наших знаний о них. Нет нужды говорить, что это не физические объекты, они обитают в автономном мире вечных сущностей. Математики для платонизма – исследователи неведомых земель, они могут лишь открыть математические истины, но не изобрести их. Америка существовала задолго до того, как ее открыл Колумб (или Лейф Эриксон), – так и математические теоремы существовали в платоновском мире задолго до того, как вавилоняне приступили к математическим изысканиям. Для Платона подлинно, в полной мере существуют лишь эти абстрактные математические формы и идеи, поскольку лишь в математике, по его мнению, можно обрести совершенно точные и объективные познания. Следовательно, по Платону, математика тесно связана с божественным (подробнее об этом см. Mueller 2005). В диалоге «Тимей» бог-творец формирует мир при помощи математики, а в «Государстве» знание математики становится главным шагом на пути к познанию божественных форм. Платон не применяет математику для формулировки некоторых законов природы, которые можно проверить экспериментально. Для него математический характер мира – всего лишь следствие того, что «Бог всегда остается геометром».

Платон распространил идеи «истинных форм» и на другие дисциплины, в особенности на астрономию. Он считал, что при изучении подлинной астрономии «мы должны оставить небеса в покое»[20] и не пытаться рассчитывать взаимное положение и видимое движение звезд. Платон полагал, что истинная астрономия – это наука, изучающая законы движения в некоем идеальном математическом мире, движения, для которого наблюдаемые небеса – лишь иллюстрация (в том же смысле, в каком геометрические фигуры, начерченные на папирусе, лишь иллюстрируют истинные фигуры).

Представления Платона об астрономических исследованиях казались противоречивыми даже некоторым самым убежденным платоникам. Сторонники его идей утверждали, что на самом деле Платон считает не что подлинная астрономия должна заниматься какими-то идеальными небесами, не имеющими отношения к наблюдаемым, но что ее задача – изучать реальное движение небесных тел, а не искаженное, какое мы наблюдаем с Земли. Однако многие мыслители указывают, что, если понимать максиму Платона слишком буквально, это сильно затруднило бы развитие наблюдательной астрономии как науки. Впрочем, как бы мы ни толковали отношение Платона к астрономии, во всем, что касается основ математики, платонизм играет ведущую роль.

Но существует ли платоновский мир математики на самом деле? И если да, то, собственно, где? И что это за «объективно истинные» утверждения, которые населяют этот мир? Или же математики, которые придерживаются платонизма, просто выражают те же романтические представления, каких, как говорят, придерживался великий художник Возрождения Микеланджело? Согласно легенде, Микеланджело был убежден, что его великолепные скульптуры уже существуют в глубине мраморных глыб, а его задача – лишь стесать все лишнее.

Современные платоники (да-да, они есть, и их представления мы подробно опишем в следующих главах) настаивают, что платоновский мир математических форм совершенно реален, и предлагают конкретные, по их мнению, примеры объективно истинных математических утверждений, которые обитают в этом мире.

Рассмотрим следующее простое и понятное утверждение. Каждое четное целое число больше двух можно представить в виде суммы двух простых чисел (делящихся только на себя и единицу). Это несложное на первый взгляд утверждение называется проблемой Гольдбаха, поскольку именно в такой формулировке обнаружено в письме прусского математика-любителя Кристиана Гольдбаха (1690–1764) Леонарду Эйлеру от 7 июня 1742 года. Убедиться в верности этого утверждения для первых нескольких четных чисел совсем не трудно: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 10 = 3 + 7 (или 5 + 5); 12 = 5 + 7; 14 = 3 + 11 (или 7 + 7); 16 = 5 + 11 (или 3 + 13) и так далее. Утверждение это до того просто, что британский математик Г. Г. Харди объявил, что «любой дурак мог бы догадаться». Более того, французский математик и философ Рене Декарт высказал это предположение еще до Гольдбаха. Однако выяснилось, что сформулировать проблему легко, а вот доказать – совсем другое дело. В 1966 году китайский математик Чэнь Цзинжунь сделал существенный шаг по пути к доказательству. Он сумел показать, что всякое достаточно большое четное число представляет собой сумму двух чисел, одно из которых простое, а второе имеет не более двух простых делителей. К концу 2005 года португальский ученый Томаш Оливейра э Сильва показал, что это утверждение верно для чисел, не превышающих 3 × 1017 (до трехсот тысяч триллионов). И все же, несмотря на колоссальные усилия многих талантливых математиков, на сегодняшний день, когда я пишу эти строки, общее доказательство так и не удалось найти. К желаемому результату не привел даже дополнительный стимул в виде миллиона долларов, которые предложили в виде награды всякому, кто найдет доказательство в срок с 20 марта 2000 года по 20 марта 2002 года (в рамках рекламной кампании романа А. К. Доксиадиса «Дядюшка Петрос и проблема Гольдбаха» [Doxiadis 2000]).

Тут-то перед нами и встает вопрос о значении «объективной истины» в математике. Предположим, что в 2016 году все же будет представлено строгое доказательство проблемы Гольдбаха. Можно ли будет тогда сказать, что это утверждение было верным уже тогда, когда о нем задумался Декарт? Многие, наверное, согласятся, что это глупый вопрос. Ясно, что если истинность утверждения доказана, значит, оно всегда было истинным, даже до того, как мы в этом убедились. Или рассмотрим другой невинный на вид пример – гипотезу Каталана (подробнее см. Ribenboim 1994). Числа 8 и 9 – последовательные целые числа, и каждое из них равно степени натурального числа – 8 = 23 и 9 = 32. В 1844 году бельгийский математик Эжен Шарль Каталан (1814–1894) предположил, что среди всех возможных степеней целых чисел лишь одна пара последовательных чисел, за исключением 0 и 1, представляет собой степени других целых чисел, и это 8 и 9. Иными словами, можно хоть всю жизнь записывать все целые степени, однако не найдешь другой пары таких чисел, которые различаются на 1. На самом деле, еще в 1342 году франко-еврейский философ и математик Леви бен Гершом (1288–1344) доказал малую часть этой гипотезы: он показал, что 8 и 9 – это единственные степени 2 и 3, которые различаются на 1. Большой шаг вперед был сделан математиком Робертом Тейдеманом в 1976 году. И все же доказательство гипотезы Каталана в общем виде ставило в тупик лучшие математические умы вот уже более 150 лет. Но вот наконец 18 апреля 2002 года румынский математик Преда Михайлеску представил полное доказательство гипотезы. Оно было опубликовано в 2004 году и на сегодня полностью принято математическим сообществом. И снова можно задаться вопросом: когда гипотеза Каталана стала истинной: в 1342 году? В 1844? В 1976? В 2002? В 2004? Разве не очевидно, что это утверждение всегда было истинным, хотя мы не знали, что оно истинно? Именно такого рода утверждения платоники и называют «объективными истинами».

Некоторые математики, философы, специалисты по когнитивной психологии и другие «потребители» математики, например программисты, считают платоновский мир плодом воображения чересчур мечтательных умов (такую точку зрения и другие догмы мы еще обсудим подробнее на страницах этой книги, в главе 9). Более того, в 1940 году знаменитый историк математики Эрик Темпл Белл (1883–1960) сделал вот какое предсказание (Bell 1940).

Согласно пророкам, последний приверженец платоновских идеалов разделит участь динозавров к 2000 году. И тогда к математике, лишившейся мифического покрова этернализма, будут относиться именно как к той науке, какой она была всегда, – к языку, изобретенному людьми с определенной целью, которую они сами себе поставили. Последний храм абсолютной истины исчезнет, а вместе с ним исчезнет и ничто, которое в нем свято оберегали.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса"

Книги похожие на "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Марио Ливио

Марио Ливио - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса"

Отзывы читателей о книге "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.