» » » » Сергей Зимов - Азбука рисунков природы


Авторские права

Сергей Зимов - Азбука рисунков природы

Здесь можно скачать бесплатно "Сергей Зимов - Азбука рисунков природы" в формате fb2, epub, txt, doc, pdf. Жанр: Прочая научная литература, издательство Наука, год 1993. Так же Вы можете читать книгу онлайн без регистрации и SMS на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Сергей Зимов - Азбука рисунков природы
Рейтинг:
Название:
Азбука рисунков природы
Издательство:
Наука
Год:
1993
ISBN:
5-02-003811-3
Скачать:

99Пожалуйста дождитесь своей очереди, идёт подготовка вашей ссылки для скачивания...

Скачивание начинается... Если скачивание не началось автоматически, пожалуйста нажмите на эту ссылку.

Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Азбука рисунков природы"

Описание и краткое содержание "Азбука рисунков природы" читать бесплатно онлайн.



Почему сетка трещин похожа на сеть городских улиц, а прожилки зеленого листа на речную систему? Как возникает ячеистый рисунок на шкуре жирафа и почему он похож на конвективные ячейки? Есть ли у природы универсальный принцип, обеспечивающий появление упорядоченных форм? Если Вы хотите узнать ответы на эти вопросы, увидеть шедевры природной графики, научиться понимать язык рисунков и конструировать пространственные структуры, если Вам интересна проблема «порядок из хаоса», прочтите эту книгу.

Для широкого круга читателей.






Паутины трещин

Этот раздел посвящен структурам разрывного типа. Поверхностные трещины в непосредственной близости от себя полностью разгружают напряжения в направлении, перпендикулярном трещине, а в параллельном направлении — лишь частично. В первом приближении при упругом поведении среды степень разгрузки в этом направлении можно охарактеризовать величиной коэффициента Пуассона. Если растягивать брусок, то одновременно с этим он становится тоньше. Коэффициент Пуассона показывает отношение этих деформаций. Теоретически он не может превышать 0,5. Это значит, что разгрузка напряжений возле трещины в направлении, параллельном ей, не может превышать 50% от первоначальных напряжений. Разброс этой величины у разных материалов относительно небольшой, обычные значения — 0,25—0,35. Минимальные значения у кварцевого стекла — 0,17, а значения, близкие 0,5, наблюдаются у гелей (это, например, обычный студень или желе). Гель — жидкость, запечатанная в тонкий упругий каркас. А жидкость объемно несжимаема, поэтому коэффициент Пуассона у гелей почти 0,5. Шкала узкая — 0,17—0,5. Но эти различия для рисунка структуры могут быть важными. При микронеоднородности среды трещина неровная, на ее берегах возникают локальные участки концентрации напряжений. В этом случае при малом значении коэффициента Пуассона у берега трещины в перпендикулярном ей направлении напряжения почти не разгружены, и за счет концентрации напряжений на сколах трещины от нее могут отходить боковые притоки, т. е. возможен вариант ветвящейся структуры. Если же этот коэффициент близок к 0,5, то трещины будут редко подходить одна к другой и полосы между параллельных трещин будут разбиваться поперечными только при сильном дополнительном наращивании напряжений. В итоге могут возникнуть структуры, близкие к рассмотренным выше идеализированным структурам, у которых элемент вблизи себя разгружает потенциал во всех направлениях — вплоть до спиралей (см. рис. 94—100).

На материалах со средними значениями коэффициента Пуассона возможно и то, и другое. Но обычно боковые притоки отходят от трещин лишь на их крутых поворотах, а трещины, заходящие в зону разгрузки другой трещины, часто вязнут и не доходят до нее. Это главные особенности взаимоотношения трещин отрыва. И еще — одна трещина не может пересечь другую.

Анализ абстрактных рисунков мы начали с рисунков, появившихся в резко анизотропном поле. Примером развития рисунка трещин усыхания в таком поле может быть обычная сырая доска, лежащая под лучами жаркого солнца. На ней из-за резкой анизотропности прочностных свойств будут развиваться только продольные трещины. Если ту же доску бросить в костер и дать ей обуглиться, то на поверхности угля мы можем увидеть тетрагональные сетки трещин, соответствующие схеме, изображенной на рис. 71, 72, а схемы рис. 78—80 можно наблюдать на срезе бревна. То есть степень анизотропности древесного угля меньше, чем продольного среза дерева. Такие же рисунки, как на схемах 71, 72, мы можем увидеть и на комбинированных средах (доска, покрытая слоем старой масляной краски). Здесь анизотропность доски задает направление генеральных трещин на краске, они идут вдоль волокон дерева. Но если мы будем рассматривать трещины на узких окрашенных деревянных брусках, то здесь генеральные трещины будут идти поперек древесных волокон, потому что грани бруска разгружают поперечные растягивающие напряжения. Если брусок пошире, то у краев трещины будут его пересекать, а ближе к центру пойдут вдоль (рис. 124), как на реальном рисунке (балконная дверь).

А теперь попытаемся промоделировать развитие рисунка в изотропном поле. В этой ситуации трещина движется в сторону больших значений напряжений и, зародившись на вершине потенциального рельефа, она стремится вернуться к ней. Возьмем круглую чашку и нальем в нее однородную пасту мела. При ее высыхании должны появиться напряжения, одинаковые во всех направлениях. Но мы уже проводили этот эксперимент (см. рис. 5—8) и в итоге получили различные рисунки. Если мы полистаем абстрактные разделы азбуки, то найдем подобные рисунки в разделе «Прямоугольные решетки». Это анизотропные условия. И действительно, паста мела лишь кажется изотропной. Когда мы выливали пасту в чашки, то при ее растекании частицы мела неизбежно приобретали упорядоченную ориентировку, в результате свойства массива стали анизотропными. Для того чтобы паста, вылитая в кювету, легла ровным слоем, ее приходится разравнивать. В первом случае пасту немного постукивали о стол (см. рис. 5). При этом массив не приобрел макроанизотропных свойств, но на локальных участках сохранилась анизотропность, полученная при движении пасты во время первоначального растекания. Во втором варианте (см. рис. 6) чашки несколько раз наклоняли из стороны в сторону, в третьем (рис. 7) — их покачивали, проворачивая вокруг оси, а в четвертом — паста разравнивалась за счет легкого постукивания по ее поверхности в центре чашки. Все эти движения запечатлелись в порогово-потенциальном поле и проявились в рисунках. И чем более однородны условия, тем с большей вероятностью проявляется малейшая анизотропность.

Рис. 124


Заставить трещину двигаться в сторону больших значений потенциала можно, лишь создав сильные градиенты напряжений. Иначе трещина «увидит» анизотропность напряжений раньше, чем их градиент. Паста мела для этой цели — неудачная среда. Мел обладает высокой гигроскопичностью, поэтому резкую границу фронта усыхания (высокие латеральные градиенты влажности и напряжений) здесь создать трудно; даже при локальном нагреве массива высокое испарение в этом месте компенсируется быстрым подтягиванием влаги из соседних областей. В результате резкую смещающуюся границу структурообразования получить в этой среде трудно.

На рис. 125 показана структура, появившаяся на пасте мела, зажатой между двух стекол. Влага отсюда уходила только через боковой периметр, но и в этом случае резкий фронт усыхания не возникал. Некоторые трещины вырывались к центру структуры и быстро «нащупывали» анизотропность, связанную с растеканием пасты при сдавливании стеклами.

На рис. 126 видим результаты моделирования при наименее анизотропных условиях — сухой порошок мела насыпался в воду через сито без всякого перемешивания. Трещины здесь зародились на двух вершинах очень пологих холмов потенциального рельефа. Это первые трещины, в последующем, по мере роста напряжений, появились и другие.

Изотропное поле можно создать, напылив пасту из пульверизатора. На рис. 127 видна структура трещин, появившаяся на поверхности эмали, напыленной на гладкий металл. Развивались эти структуры в режиме смещающейся границы. Зарождались трещины большей частью на выпуклой стороне других трещин (здесь наибольшая концентрация напряжений) и тут же стремились развернуться назад.

Многие природные рисунки, связанные с трещинами усыхания, возникают путем многократного повторного растрескивания. При обводнении массива полигоны разбухают, трещины заплывают, закрываются, но рисунок в виде канавок сохраняется. При последующем высыхании водоема трещины в большинстве случаев образуются по этим канавкам, но зачастую в другой последовательности. При этом если вторичная трещина в Т-образном сочленении образуется первой, то она пересекает канавку и в итоге формируется крестообразное сочленение ( + ). Заплывшая трещина ослабляет массив, но не разгружает напряжения, поэтому новая трещина при подходе к ней под углом не разворачивается и не меняет направление — формируется Х-образное сочленение трещины и старой канавки.

Рис. 125


Рис. 126


Рис. 127


При моделировании процесса многократного повторного обводнения и растрескивания массива в итоге получается рисунок канавок «более округлый» по сравнению с первоначальной сетью трещин и с более выдержанными по размерам полигонами, так как канавки, разделяющие небольшие полигоны, повторно не трескаются и заплывают. В итоге рисунок немного приближается к энергетически выгодному гексагональному.

Тройное, близкое к равноугольному, сочленение чаще всего возникает в массивах с мезонеоднородным полем напряжений — при «бугристо-западинном потенциальном рельефе» (см. рис. 84). Такой рельеф может возникнуть даже в однородных средах при быстром промачивании массива, когда верхний слой набухает и препятствует выходу воздуха из нижележащих горизонтов. При этом возникает ситуация «гравитационной неустойчивости», при которой встречные потоки влаги и воздуха формируют подобие конвективных ячеек, в последующем трещины огибают эти ячейки. При моделировании трехлучевые сочленения часто возникают в местах, где в среде были зажаты пузырьки воздуха.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Азбука рисунков природы"

Книги похожие на "Азбука рисунков природы" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Сергей Зимов

Сергей Зимов - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Сергей Зимов - Азбука рисунков природы"

Отзывы читателей о книге "Азбука рисунков природы", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.