» » » » Владимир Егоркин - Безопасность группового мореплавания. Международно-правовые аспекты


Авторские права

Владимир Егоркин - Безопасность группового мореплавания. Международно-правовые аспекты

Здесь можно купить и скачать "Владимир Егоркин - Безопасность группового мореплавания. Международно-правовые аспекты" в формате fb2, epub, txt, doc, pdf. Жанр: Юриспруденция, издательство Литагент «Юридический центр»670c36f1-fd5f-11e4-a17c-0025905a0812, год 2004. Так же Вы можете читать ознакомительный отрывок из книги на сайте LibFox.Ru (ЛибФокс) или прочесть описание и ознакомиться с отзывами.
Владимир Егоркин - Безопасность группового мореплавания. Международно-правовые аспекты
Рейтинг:
Название:
Безопасность группового мореплавания. Международно-правовые аспекты
Издательство:
неизвестно
Год:
2004
ISBN:
5-94201-285-7
Вы автор?
Книга распространяется на условиях партнёрской программы.
Все авторские права соблюдены. Напишите нам, если Вы не согласны.

Как получить книгу?
Оплатили, но не знаете что делать дальше? Инструкция.

Описание книги "Безопасность группового мореплавания. Международно-правовые аспекты"

Описание и краткое содержание "Безопасность группового мореплавания. Международно-правовые аспекты" читать бесплатно онлайн.



В книге на национальных и международно-правовых актах и примерах из отечественной и зарубежной практики мореплавания рассмотрены понятие и виды группового плавания морских судов, гидрометеорологические факторы в международном судоходстве и их влияние на групповое плавание при буксировке, спасании, промысле, ледокольной и лоцманской проводке, научно-исследовательских работах, защите морской среды от загрязнения.

Книга рассчитана на широкий круг читателей и может быть полезна студентам, научным работникам и специалистам в области морского права и торгового мореплавания.






При больших значениях вертикального изменения температуры (около 1 градуса на 100 м и более) в атмосфере возникают мощные восходящие движения воздуха в виде потоков или струй со скоростью от нескольких метров в секунду до 20 и более метров в секунду. Одновременно происходят и нисходящие движения воздуха, менее интенсивные, но захватывающие большие площади. Такая термическая турбулентность называется упорядоченной конвекцией. Над сушей упорядоченная конвекция наблюдается в дневные часы при интенсивном прогреве подстилающей поверхности. Над морем конвективные условия являются преобладающими, так как обычно поверхность воды теплее воздуха.

Большое влияние на термический режим атмосферы оказывают фазовые превращения воды (конденсация водяного пара, испарение капель и кристаллов воды и пр.), а также адвекция – перенос воздуха воздушными течениями большого масштаба по горизонтали.

Тепловой баланс для системы Земля – атмосфера рассчитывается в средних значениях за большие промежутки времени по всей поверхности планеты. В соответствии с законом сохранения энергии он должен быть равен нулю.

Из 100 % солнечной радиации, поступающей в атмосферу, 70 приходится на прямую радиацию, из которых 23 отражается от облаков, 20 поглощается воздухом, 27 падает на земную поверхность, причем поглощается ею 25 и отражается от нее 2 %. На рассеянную радиацию приходится 30 %, из которых 8 уходит в мировое пространство и 22 доходит до земной поверхности (20 % поглощается и 2 % уходит в мировое пространство). Таким образом, с верхней границы атмосферы в мировое пространство уходит 23+8+4=35 % радиации. Эту величину – 35 % – называют альбедо Земли.

Атмосфера излучает 157 % энергии, из которых 102 направлены к земной поверхности, а 55 % уходит в мировое пространство.

Земная поверхность путем собственного длинноволнового излучения теряет 117 %, из которых 10 уходит в мировое пространство, а 107 % поглощается атмосферой. Кроме того, 23 % тепла расходуется на испарение воды и 7 % теряется при теплообмене с атмосферой. Иначе говоря, как на верхней границе атмосферы, так и в самой атмосфере и на земной поверхности существует равенство притока и отдачи тепла.[137]

Вместе с тем температура воздуха может изменяться не только под влиянием рассмотренных факторов (потоки лучистой энергии, теплопроводность, конвекции и пр.), но и в результате изменения атмосферного давления. Давление с высотой уменьшается, поэтому объем поднимающегося более теплого воздуха расширяется. Если расширение воздуха идет без притока энергии извне, то единственным источником, из которого может черпаться энергия, является внутренняя энергия самого расширяющегося воздуха. Так как внутренняя энергия газа пропорциональна его температуре, то уменьшение энергии ведет к понижению температуры.

Охлаждение воздуха при расширении и нагревание при сжатии, происходящее без притока и отдачи тепла, называют адиабатическим охлаждением или адиабатическим нагреванием. Строго адиабатических процессов в атмосфере не может быть, так как никакая масса воздуха не может быть совсем изолирована от теплового влияния окружающей среды. Однако если атмосферный процесс протекает достаточно быстро или поднимается (опускается) достаточно большой объем воздуха, то теплообмен мал и изменение состояния с достаточным приближением можно считать диабатическим. Вблизи земной поверхности процессы большей частью неадиабатичны, так как воздух получает или отдает тепло подстилающей поверхности. В свободной атмосфере процессы в основном адиабатичны, поскольку воздух удален от земной поверхности, являющейся основным источником тепла.

Как показывают вычисления, температура воздуха изменяется примерно на один градус при подъеме или опускании массы воздуха на каждые 100 м. Эта величина называется сухоадиабатическим градиентом температуры. Адиабатический процесс, происходящий внутри поднимающегося (опускающегося) насыщенного воздуха, называется влажноадиабатическим. Величина понижения (повышения) температуры на каждые 100 м поднимающейся (опускающейся) влажной насыщенной массы воздуха называется влажноадиабатическим градиентом температуры. Его величина колеблется от 3 до 9 десятых градуса на 100 м высоты.

Существенным фактором, влияющим на условия мореплавания, является распределение температуры в атмосфере. Поскольку температура воды обычно выше температуры воздуха, над морем вблизи водной поверхности почти всегда существует тонкий слой воздуха, характеризующийся сверхадиабатическим градиентом температуры (больше 1 градуса на 100 м высоты). Толщина этого слоя увеличивается с ростом разности температур. Так, при скорости ветра 6 м/сек и разности температур на поверхности моря и на уровне 5 м над морем, равной 0,5 градуса, толщина этого слоя 6 м, а при разности температур 2 градуса – около 20 м. Этот слой характеризуется интенсивной термической турбулентностью.

При определенных условиях над сушей и морем возникают слои инверсии, которые имеют большое значение для хода различных атмосферных процессов. Температурные инверсии являются задерживающими слоями, гасящими вертикальное движение воздуха. Они играют большую роль в процессах распространения электромагнитных и звуковых волн в атмосфере.

Температурные инверсии могут развиваться в приземном слое атмосферы (приземные инверсии) и в свободной атмосфере. Над океанами инверсионные условия в приводном слое встречаются значительно реже, чем над сушей. В свободной атмосфере инверсии встречаются одинаково часто как над сушей, так и над морем.

Радиационные инверсии в нижнем слое воздуха наблюдаются в основном на суше и над морскими районами, сплошь покрытыми льдами. Эти инверсии возникают в результате охлаждения подстилающей поверхности за счет длинноволнового излучения. Особенно сильные приземные инверсии возникают при ясном небе и слабом ветре. Вместе с охлаждением земной поверхности происходит понижение температуры и в прилегающем к ней слое воздуха. Подобные условия встречаются летом только в ночное время, а зимой они могут сохраняться и днем. Мощность суточных инверсий колеблется от 5–10 м до сотен метров. Зимние инверсии по высоте достигают 2–3 км. Радиационные инверсии часто сопровождаются туманами, носящими название радиационных.

Адвективные инверсии образуются как над сушей, так и над морем, когда теплая воздушная масса перемещается на холодную подстилающую поверхность. По своей интенсивности эти инверсии уступают радиационным, и их мощность редко достигает нескольких сотен метров. Характерным примером таких инверсий являются инверсии, образующиеся при перемещении теплого воздуха на холодное течение (например, Лабрадорское, Ойя-Сио) или с открытых морских районов на районы, покрытые льдом (у границы льдов). Часто эти инверсии сопровождаются адвективными туманами.

Суточный и годовой ход радиации, падающей на земную поверхность, приводит к тому, что и температура этой поверхности имеет суточные и годовые колебания. Вслед за этими изменениями происходит изменение температуры приземных слоев атмосферы. Наибольшие колебания температуры наблюдаются в самых нижних слоях тропосферы. По мере удаления от земной поверхности происходит уменьшение амплитуд колебаний температуры и запаздывание фаз этих колебаний.

Над сушей суточный ход температуры воздуха напоминает синусоиду с минимумом около времени восхода Солнца и максимумом около 14–15 часов местного времени.

Суточный ход температуры воздуха над морем обусловливается конвективными и турбулентными процессами и, следовательно, зависит от суточного хода температуры поверхности моря. Суточные колебания температуры в воде распространяются на глубину порядка десятков метров, а в почве – менее чем на 1 м. Годовые колебания температуры в воде распространяются на глубину сотен метров, а в почве – только на 10–20 м. Вместе с тем амплитуда суточных колебаний температуры поверхности воды в 10–100 раз меньше, чем поверхностных слоев почвы, и поэтому амплитуда суточных колебаний температуры воздуха над океаном также небольшая. Наименьшие амплитуды суточного хода температуры воздуха приходятся на зиму (0,2 градуса на широте 64 градуса), наибольшая – на лето (1,5 градуса на широте 36 градусов).

Годовой ход температуры воздуха над морем в среднем параллелен годовому ходу температуры поверхности моря. Отклонения наблюдаются лишь в первые летние месяцы, когда под воздействием солнечной радиации температура воздуха повышается несколько быстрее, чем температура поверхностного слоя моря. Максимум температуры наблюдается в августе, минимум – в марте (в северном полушарии), т. е. имеет место запаздывание времени наступления экстремальных температур на 1–2 месяца по сравнению с континентами. Вследствие этого весна над океаном оказывается холоднее осени, на суше – наоборот.


На Facebook В Твиттере В Instagram В Одноклассниках Мы Вконтакте
Подписывайтесь на наши страницы в социальных сетях.
Будьте в курсе последних книжных новинок, комментируйте, обсуждайте. Мы ждём Вас!

Похожие книги на "Безопасность группового мореплавания. Международно-правовые аспекты"

Книги похожие на "Безопасность группового мореплавания. Международно-правовые аспекты" читать онлайн или скачать бесплатно полные версии.


Понравилась книга? Оставьте Ваш комментарий, поделитесь впечатлениями или расскажите друзьям

Все книги автора Владимир Егоркин

Владимир Егоркин - все книги автора в одном месте на сайте онлайн библиотеки LibFox.

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Отзывы о "Владимир Егоркин - Безопасность группового мореплавания. Международно-правовые аспекты"

Отзывы читателей о книге "Безопасность группового мореплавания. Международно-правовые аспекты", комментарии и мнения людей о произведении.

А что Вы думаете о книге? Оставьте Ваш отзыв.